7 research outputs found

    Ultrafast time-domain spectroscopy system using 10 GHz asynchronous optical sampling with 100 kHz scan rate

    No full text
    An ultrafast time-domain spectroscopy system employing asynchronous optical sampling at a repetition rate of 10 GHz is presented. Two ultra-compact Ti:sapphire femtosecond ring lasers allow to achieve scan rates as high as 100 kHz for a 100 ps long time window and a time-delay resolution of 100 fs. The feasibility of this high-speed ASOPS system is evaluated by performing THz time domain spectroscopy on molecular gases where signal-to-noise ratios exceeding 30 dB for averaging times in the millisecond range have been obtained. In order to demonstrate the benefits of this system for ultrafast pump-probe spectroscopy we demonstrate the high-sensitivity detection of coherent acoustic phonons with dephasing times in the range of the 100 ps time window

    Unambiguous real-time terahertz frequency metrology using dual 10  GHz femtosecond frequency combs

    Get PDF
    Terahertz frequency metrology by radio frequency downconversion using femtosecond optical sampling relies on the harmonic factor retrieval between the terahertz frequency and the optical sampling rate. At typical femtosecond laser repetition rates, this imposes an ambiguity for frequency metrology. We report on a dual-comb sampling system for the unambiguous frequency measurement of terahertz quantum cascade lasers with hertz-level precision. Two Ti:sapphire oscillators with 10 GHz repetition rate are used for the electro-optic sampling of terahertz radiation at 2.5 THz emitted by actively mode-locked terahertz quantum cascade lasers with 9.7 GHz and 19.6 GHz repetition rates. By coherent downconversion, the emitted terahertz waveforms are measured in the radio frequency domain. The terahertz frequency comb is stabilized by employing a phase-locked loop on a radio frequency beat-note signal. A second infrared sampling comb is used to measure the absolute frequencies of the terahertz radiation. This method, which is based on the detuning of the sampling repetition rates, allows the direct retrieval of the quantum cascade laser’s absolute frequency in real time without using additional optical frequency references for calibration. In order to demonstrate the feasibility of the stabilization and readout technique, a high-resolution spectroscopy measurement on gaseous methanol is presented.publishe

    Two-colour high-speed asynchronous optical sampling based on offset-stabilized Yb:KYW and Ti:sapphire oscillators

    No full text
    We present a high-speed asynchronous optical sampling system, based on two different Kerr-lens mode-locked lasers with a GHz repetition rate: An Yb:KYW oscillator and a Ti:sapphire oscillator are synchronized in a master-slave configuration at a repetition rate offset of a few kHz. This system enables two-colour pump-probe measurements with resulting noise floors below 10-6 at a data aquisition time of 5 seconds. The measured temporal resolution within the 1 ns time window is below 350 fs, including a timing jitter of less than 50 fs. The system is applied to investigate zone-folded coherent acoustic phonons in two different semiconductor superlattices in transmission geometry at a probe wavelength far below the bandgap of the superlattice constituents. The lifetime of the phonon modes with a zero wave vector and frequencies in the range from 100 GHz to 500 GHz are measured at room temperature and compared with previous wor

    Projektmanagement

    No full text

    Literatur

    No full text
    corecore